Grey matter and white matter ischemic damage is reduced by the competitive AMPA receptor antagonist, SPD 502.
نویسندگان
چکیده
Protection of both grey and white matter is important for improvement in stroke outcome. In the present study the ability of a competitive alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) antagonist to protect axons, oligodendrocytes, and neuronal perikarya, was examined in a rodent model of transient focal cerebral ischemia. SPD 502 (8-methyl-5-(4-( -dimethylsulfamoyl)phenyl)-6,7,8,9-tetrahydro-1H-pyrrolo[3,2h]-isoquinoline-2,3-dione-3-o(4-hydroxybutyricacid-2-yl)oxime) was administered as an intravenous bolus (16 mg/kg) 15 minutes before transient (3-hour) middle cerebral artery (MCA) occlusion, followed by an intravenous infusion (16 mg kg(-1) hr(-1)) of the drug for 4 hours. Twenty-one hours after ischemia, axonal damage was reduced by 45% (P = 0.006) in the SPD 502-treated group compared with the vehicle. The anatomic extent of ischemically damaged oligodendrocytes, determined by Tau1 immunoreactivity, was reduced in the cerebral cortex by 53% (P = 0.024) in SPD 502-treated rats compared with vehicle-treated rats, but there was minimal effect in the subcortex. The volume of neuronal perikaryal damage after MCA occlusion was significantly reduced by SPD 502 in the cerebral cortex (by 68%; P = 0.005), but there was minimal change in the subcortex with drug treatment. The AMPA receptor antagonist significantly reduced the anatomic extent of lipid peroxidation (assessed as the volume of 4-hydroxynonenol immunoreactivity), and this may have contributed to its ability to protect multiple cell types in ischemia. The data demonstrate that AMPA blockade protects both grey and white matter from damage induced by transient focal ischemia.
منابع مشابه
White matter injury in spinal cord ischemia: protection by AMPA/kainate glutamate receptor antagonism.
BACKGROUND AND PURPOSE Spinal cord ischemia is a serious complication of surgery of the aorta. NMDA receptor activation secondary to ischemia-induced release of glutamate is a major mechanism of neuronal death in gray matter. White matter injury after ischemia results in long-tract dysfunction and disability. The AMPA/kainate receptor mechanism has recently been implicated in white matter injur...
متن کاملSPD 502: a water-soluble and in vivo long-lasting AMPA antagonist with neuroprotective activity.
Accumulating preclinical data suggest that compounds that block the excitatory effect of glutamate on excitatory amino acid receptors may have neuroprotective effects and utility for the treatment of neurodegeneration after brain ischemia. In the present study, the in vitro and in vivo pharmacological properties of the novel glutamate antagonist SPD 502 [8-methyl-5(4-(N,N-dimethylsulfamoyl)phen...
متن کاملEndocannabinoids potently protect the newborn brain against AMPA-kainate receptor-mediated excitotoxic damage.
Brain lesions induced in newborn mice or rats by the glutamatergic agonists ibotenate (acting on NMDA and metabotropic receptors) or S-bromowillardiine (acting on AMPA-kainate receptors) mimic some aspects of white matter cysts and transcortical necrosis observed in human perinatal brain damage associated with cerebral palsy. Exogenous and endogenous cannabinoids have received increasing attent...
متن کاملWhite matter axon vulnerability to AMPA/kainate receptor-mediated ischemic injury is developmentally regulated.
Periventricular white matter injury (PWMI) is the leading cause of neurodevelopmental morbidity in survivors of premature birth. Cerebral ischemia is considered a major etiologic factor in the generation of PWMI. In adult white matter (WM), ischemic axonal damage is mediated by AMPA/kainate receptors. Mechanisms of ischemic axonal injury during development are not well defined. We used a murine...
متن کاملAmpa/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter.
We developed an in situ model to investigate the hypothesis that AMPA/kainate (AMPA/KA) receptor activation contributes to hypoxic-ischemic white matter injury in the adult brain. Acute coronal brain slices, including corpus callosum, were prepared from adult mice. After exposure to transient oxygen and glucose deprivation (OGD), white matter injury was assessed by electrophysiology and immunof...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
دوره 22 9 شماره
صفحات -
تاریخ انتشار 2002